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Critical behavior of a traffic flow model

L. Roters* S. Libeck! and K. D. Usadél
Theoretische Tieftemperaturphysik, Gerhard-Mercator-Univeréhaisburg, Lotharstrasse 1, 47048 Duisburg, Germany
(Received 8 July 1998

The Nagel-Schreckenberg traffic flow model shows a transition from a free flow regime to a jammed regime
for increasing car density. The measurement of the dynamical structure factor offers the chance to observe the
evolution of jams without the necessity to define a car to be jammed or not. Above the jamming transition the
dynamical structure factor exhibits for a givérvalue two maxima corresponding to the separation of the
system into the free flow phase and jammed phase. We obtain from a finite-size scaling analysis of the smallest
jam mode that upon approaching the transition, long-range correlations of the jams occur.
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[. INTRODUCTION made by Vilar and Souzdl 1], who introduced an order pa-

Real traffic displays with increasing car density a transi-rameter which equals the number of standing cars. Without
tion from free flow traffic to congested traffic. This break- noise this quantity vanishes continuously below the transi-
down of free flow traffic is accompanied by the occurrencetion. But including noise, the amount of standing cars is
of traffic jams which are not attributable to any externalfinite for any nonzero density, i.e., the average number of
cause but only to distance fluctuations between followingstanding cars does not vanish below the critical density. The
vehicles within very dense and unstable trafiee, for in- ~ crucial point is that below the transition a particle may stop
stance,[1]). These traffic jams find expression in shock due to the noisy slowing down rule of the dynamics, but this
waves, i.e., in backward moving density fluctuations. Thisbehavior does not coincide with backward moving density
property of jams was already found during the 1960s in traffluctuations and algebraic decaying correlation functions
fic observationiZ]_ Beyond these ear|y experimenta] inves- which would indicate a critical behavior of the system. At
tigations, recently performed measurements of real highwapresent, a convincing definition of an order parameter, which
traffic led to the conjecture that jams are characterized byends below the critical density to zero, is not known. Again,
several independent parameters, e.g., the jam velocity, medhis not even clear whether the Nagel-Schreckenberg traffic
flux, etc.[3]. flow model displays criticality at all.

Since the seminal work of Lighthill and Whitham in the =~ We use the dynamical structure factor both to make pre-
middle of the 1950$4], many attempts have been made todictions about the properties of the different phases observed
construct more and more sophisticated models which incorn the Nagel-Schreckenberg model and to investigate the
porate various phenomena occun’ing in real traffar an question of whether the occurrence of ajam can be described
overview, sed5,6]). A few years ago Nagel and Schrecken- s a phase transition or not. The dynamical structure factor
berg[7] introduced a cellular automata model, which simu-Wwhich is closely related to the correlation function is an ap-
lates single-lane one-way traffic, and which is able to reproPropriate tool to do this because it naturally distinguishes
duce the main features of traffic flow, backward movingbetween the two phases characterized by positive and nega-
shock waves, and the so-called fundamental diagsed 8] tive velocities(free traffic flow and backward moving shock
and references thergin Investigations of the Nagel- waves. Thus the advantage of our method of analyses is that
Schreckenberg traffic flow model show that when crossing 4he properties of both phases can be examined without the
critical point, a transition takes place from a homogeneou#€cessity of defining a car as jammed or not. The paper is
regime(free flow phasgto an inhomogeneous regime, which organized as follows. In Sec. Il we briefly describe our
is characterized by a coexistence of the free flow phase ar@nalysis of the dynamical structure factor and recall the main
the jammed phas@,_’]_o]_ Thereby, the free flow phase is results which were publlshed recenﬂyS]. In Sec. Il we
characterized by a low local density and the jammed phasextend this method of analysis to the so-called velocity-
by a high local density, respectively. Due to the particle confarticle space and address the question of whether the tran-
servation of the model, the transition is realized by the syssition from the free flow regime to the phase coexisting re-
tem separating into a low density region and a high densit@ime (where the system separates into the jammed and free
region[9]. Despite several attempts, it is still an open quesflow phasg can be considered as a phase transition. Based on
tion whether the transition can be described as a critical phehe dynamical structure factor, our results suggest that a con-
nomenon(see, for instancg9,11-14). tinuous phase transition takes place.

An attempt to investigate the occurrence of a jam was

Il. MODEL AND SIMULATIONS

*Electronic address: lars@thp.uni-duisburg.de The Nagel-Schreckenberg traffic flow mod@l is based
"Electronic address: sven@thp.uni-duisburg.de on a one-dimensional cellular automaton of linear $iznd
*Electronic address: usadel@thp.uni-duisburg.de N particles. Integer values describing the positiop
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e{1,2,...L}, the velocityv,e{0,1,...vnag, and the gap Sk.w)
0, to the forward neighbor are associated with each particle. 10'
For each particle, the following update steps representing the
acceleration, the slowing down, the noise, and the motion of 107!
the particles are done in paralléi) if v,<g,, the velocity
is increased with respect to the maximal velocity,
—minfv,+1vmad; (i) to avoid crashes the velocity is de-
creased by ,—g, if v,>g,; (i) if v,>0, the velocity is -
decreased by,—v,,— 1 with probabilityP in order to allow
fluctuations; and finallyiv) the motion of the cars is given
by r,—r,+v,. Thus the behavior of the model is deter-
mined by three parameters, the maximal velooify,, the
noise parameteP, and the global density of cags=N/L,
whereN denotes the total number of cars dndhe system
size, which is chosen to He=32 768 throughout the whole
paper.

Our analysis is based on the dynamical structure factor
whose definition is as follows: Consider the occupation func-
tion

1 if cell r is occupied at timet
= . 1
.t 0 otherwise. @) FIG. 1. The dynamical structure fact&(k,w) below (upper

figure) and abovelower figure the jamming transition. The ridges
The evolution of 7, , leads directly to the space-time dia- with maximal S(k,w) indicate the various modes.
gram where the propagation of the particles can be visualized

(see, for instance, Fig. 2 ifl6]). The dynamical structure cides with those of recently published investigatigag],
factor S(k,w) is then given by which were obtained from a variation analysis of a
) multipoint-autocorrelation function. The jam velocity is, be-
> @) side the maximum flow, the fluxes inside and outside of the

' jam and the average vehicle spe¢sise, for instancd 3,18

and references therginA characteristic parameter of real

where the Fourier transform is taken over a finite rectangle ofraffic and its knowledge is therefore necessary to calibrate
the space-time diagram of siz& T, i.e.,r andt are integers  any traffic model to the conditions observed in real traffic.
ranging from 1 tol and 1 toT, respectively. Thek and w
are also discrete valuds=2mm,/l and w=2mm, /T with
mye{0,1,2...)-1} and m,e{0,1,2...T—1}, respec-
tively. The dynamical structure fact@(k,w) is related to
the Fourier transform of the real-space density-density cor- In the preceding section we briefly described that the
relation functionC(r,t) and compared to the analysis of the analysis of the dynamical structure factor allows to deter-
steady-state structure factt®] and the related steady-state mine the characteristic velocities of the jammed and the free
correlation functior{14] it contains both the spatial and the flow phase. In this section we are interested in the correla-
temporal evolution of the system. Figure 1 shows the dy+ions occurring within the jammed phase. Therefore, it is
namical structure factor both below and above the transitiomecessary to analyze the jammed mode. Unfortunately, the
Below the transitionS(k,») exhibits one mode formed by superposition of the jammed and the free flow mode makes it
the ridges. This mode is characterized by a positive slope difficult to consider the pure jammed mog@see Fig. 1 Thus
=dwl ok corresponding to the positive velocity; of the  a refinement of the analysis of the dynamical structure that
particles in the free flow phase. Increasing the global densityallows to separate both modes is needed. This can be
a second mode appears at the transition to the coexistenegehieved by changing from the occupation functign, de-
regime. This second mode exhibits a negative slopg ( fined in real space, to the velocity-particle space where the
<0) indicating that it corresponds to the backward movingevolution of each particle velocity, ; is considered. A snap-
density fluctuations in the jammed phase. shot of the velocity-particle space for a given time is shown

Due to the sign of their characteristic velocitigsandv , in Fig. 2. In the free flow phase, where the cars can be
both phases can clearly be distinguished. Recently performezbnsidered as independent partid@k the velocities fluctu-
investigations revealed that the characteristic velocity of theate according to the noisy slowing down rule between the
free flow phase equals the velocity ;& v ., P) of free  two valuesv 5 andov ma— 1, respectively. Extended regions
flowing cars in the low density limitd—0), i.e., cars of the with small or even zero velocities corresponds to traffic
free flow phase behave as independent particles for all defjams. Comparable to the space-time diagram, these regions
sities[15]. The velocity of the jams neither depends on themove backward in time. The Fourier transform of the
global density nor on the maximum velocity, i.e., it is a velocity-particle diagram in two dimensions leads to the dy-
function of the noise parameter onl¥5]. This result coin- namical structure factds,(k, ) which is given by

1 )
S(k,w)=={ > pk—eV
IT r’t !

Ill. THE JAMMED PHASE
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FIG. 2. Snapshot of the velocity, ; as a function of car number
n at a certain time and P=0.5. Jams are characterized by several
particles with low velocity. The free flow particles fluctuate inde- 10° L s - - \
pendently between, =vma— 1 andv,, ;=vmax- 10 10 10 10 10
1 ) 2
Sy(k,w)= N_T<Et vy kNt > ©) FIG. 4. The scaling plot o8, (k,w) along the jam mode for
n,

various values ofN (with Ne{128,256,512,1024,2048and N
=T) and a fixed value of the global density with>p.. For 6=
—1.22 and{=0.34 we got a good data collapse indicating that the
correlation of the jams decays algebraicdthashed line with slope

?/=—3.6).

with k=27mm, /N, wo=2mm,/T, and where then's are in-
tegers.

Compared to the dynamical structure factor of the ordi-
nary space-time diagram, the dynamical structure factor o

the velocity-particle space has the advantage that the fré8mmed particles. We will show that among those particles,
flow phase contributes only white noi$&, (K, ®)|ee flow long-range correlations exist only above the transition
=consi, i.e., the analysis of the occurring traffic jams is \yhereas below the transition these correlations are restricted
made easier. Figure 3 shows the structure fa8idik,»)  tg a finite correlation length. In Fig. 4 we plot the values of
above the transition. The structure factor displays one ridgg,e dynamical structure fact&; (k,w) for w/k=v , i.e., the

with a negative slope, corresponding to the backward movy,jyes along the ridge which correspond to the jam modes.

ing jams. The notch parallel to theaxis througho=0iS |5 order to take finite-size effects into account, we use the
caused by finite-size effects and disappears with increasing:ajing ansatz

system size. The peak in the center of the diagf&y(k
=0,0=0)] describes the velocity fluctuations of the whole Sy (K, )] wik=p. =N~ F(N*K). (4)
system. It is an average over both coexisting phases and :
therefore it leads to uncertain results on the occurrence dfor = —1.22 and/=0.34 we obtain a convincing data col-
jams. lapse of all curves. The dynamical structure factor decays
In the following we carry out a quantitative analysis of the algebraically,

ridges to obtain information about correlations between

Sv(k!w)|w/k=vjwk_71 (5)

Sy (k,w) where the exponent is given by~=3.6+0.2. This algebraic
decay of the dynamical structure factor indicates that the
corresponding correlation function is also characterized by
an algebraic decay, i.e., the system displays long-range cor-
relations above the transition. Next we are interested in the
values ofS,(k,w) for w/k=v; below the critical density.
These values are shown in Fig. 5. Due to the finite amount of
standing cars below the transition, the jam mode does not
vanish. Our analysis shows that the jam mode decreases like
a Lorentz curve,

1
Sv(kiw)|w/k=vj~m+c. (6)

Herein¢é denotes a correlation length, defined in the velocity-

particle space. The terms takes into consideration that,

caused by the free flow phase, the jam mode does not tend to
FIG. 3. The dynamical structure fact8(k,w) of the velocity- ~ zero for largek but to a finite value. Beside the jam mode,

particle space above the transition = 0.5. Notice that the free  Fig. 5 shows a Lorentz curve according to E8), which has

flow phase contributes t8,(k,) only white noise. been fitted to the data. To estimate the influence of finite-size
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FIG. 5. The dynamical structure factd®,(k,w) for w/k FIG. 6. The smallest mode &, (k—0,0—0), with w/k=v;,

=Vj, Uma—5 P=0.5, andN=1024. The dashed line corre- ¢, gitterent values ofN (Ne{128,256,512,1034 and ratios
sponds to a Lorentzian fit according to Ef). The inset shows the N/T (N/Te{0.5,1,2,4) andP=0.321.

correlation lengtt¢ as a function op.— p. The obtained power-law

behavior(solid line) agrees with Eq(7). with w/k=v;. We measureds,(k—0,0—0) for various
values ofN andT and forP=0.321 which corresponds to a
effects on the correlation length, we first determinedétfier ~ jam velocity v;~—1/2 [15]. The finite-size scaling works

different values oN (with T=N) and found that is almost ~ and fory~—0.2 andx~0.1 we got a good data collapse,
unaffected by finite-size effects for the densities shown inwhich is plotted in Fig. 6. Especially we obtain the data
Fig. 5. Therefore, these values of the correlation length equd©llapse for different ratios dfl andT, which shows that the
within negligible errors those values of the correlation lengthSyStem behaves isotropic MandT. To investigate the de-
found in the limitN—c (with N=T). The dependence of pendence of the exponents.éhwe determined them also
the correlation length op.— p is shown in the inset of Fig. [oF another value of the noise paramet€<0.519 corre-

: : : : sponding taw;~ — 1/3). Due to the size of the corresponding
5. With p approachingp, the correlation length diverges as error bars, no significanP dependence of the exponents

. could be observed. Further investigation with improved ac-
&~ (pc=p) " (7 curacy is needed to clarify this point.
Note that it is not justified to identify the scaling expo-
with »=0.92+0.05. nents[Eq. (8)] with the usual critical exponents of second-
Since ¢ describes the correlation of particles of the order phase transitions/€ 8/v andx=1/v). First it is not
jammed phase, the occurrence of long-range order in thglear if S,(k—0,0—0) equals the order parameteee[20]
system ap = p indicates that the system displays criticality. and references therginThe second point is that the usual
As mentioned above, the correlation lengthis infinite  finite-size scaling ansatz rests on the validity of the hyper-
above the transitioflong-range ordgrand finite below. This  scaling relation between the exponerisee, for instance,
coincides with measurements of the lifetime distribution of[21]). Despite these restrictions, the finite-size scaling analy-
jams at the critical poinf19] which displays a power-law sijs of the smallest jam mode reveals that it vanishes below
behavior, i.e., traffic jams occur on all time scales. Below thethe transition. In the hydrodynamic limit\(— o, T—) no
critical density the lifetime of the jams is finite and no long- |ong-range correlations in space and time occurgderp, .
range correlations of jams can occur. Above the critical value the correlation function displays an
In the following we address the question of how long- algebraic decay. Since the correlations of the jams are finite
range order occurs by approaching the transition pointpelow and infinite above,, the system displays critical be-
Therefore we consider the smallest positive mode on th@avior. This agrees with the above-mentioned investigations
ridge of jammed particlesS,(k—0,0—0) with w/k=v;.  of the lifetime distribution[19] of jams and with measure-
This value contains the information regarding how long-ments of the relaxation time of the system. It was shown that
range and long-time correlations appear when the transitiofhe relaxation timer diverges at the critical point with in-
takes place and it is believed to be closely related to an ordejreasing system size~L? with a P depending exponert
parameteKsee, for instancd20]). If the transition from the  [12-14. But one has to mention that above the transition the
free flow regime to the jammed regime can be described as@easurements of the relaxation time yield unphysical results,
critical phenomenonS, (k—0,0—0) should vanish below jn the sense that the relaxation time becomes negftide
the transition p<<p.). Simulating finite system sizes, this \We think that the origin of this behavior is caused by the
means that the smallest jam mode obeys the finite-size scghhomogeneous character of the system above the transition
Ing ansatz where the system separates into two coexisting phases. The
relaxation time measurement does not take this inhomoge-
S,(k—0,0—0)=(NT) Y2f(NT)*?(p—po)), (8  neous character into account.
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V. CONCLUSIONS system exhibits long-range correlations of the jammed par-

We studied numerically the Nagel-Schreckenberg traffiCticles and below the transition the correlations display a finite
flow model. The investigation of the dynamical structure faC_correlation length that diverges at the critical point, indicat-
ing that a continuous phase transition takes place. Using a

tor allowed us to examine the transition of the system from &

free flow regime to a jammed regime. Above the transitionINite-size scaling analysis, we showed that in the hydrody-

the dynamical structure factor exhibits two modes correNamic limit the smallest jam mode which corresponds to the

sponding to the coexisting free flow and jammed phase. DulPng-range correlations of jams vanishes below the transi-
to the sign of their characteristic velocities andv;, both  tion. We think that an extended investigation of this quantity
phases can clearly be distinguished. could lead to a convincing definition of an order parameter

The analysis of the dynamical structure factor of thewhich describes the transition from the free flow to the
velocity-particle space shows that above the transition thgammed regime.
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