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Critical behavior of a traffic flow model

L. Roters,* S. Lübeck,† and K. D. Usadel‡

Theoretische Tieftemperaturphysik, Gerhard-Mercator-Universita¨t Duisburg, Lotharstrasse 1, 47048 Duisburg, Germany
~Received 8 July 1998!

The Nagel-Schreckenberg traffic flow model shows a transition from a free flow regime to a jammed regime
for increasing car density. The measurement of the dynamical structure factor offers the chance to observe the
evolution of jams without the necessity to define a car to be jammed or not. Above the jamming transition the
dynamical structure factor exhibits for a givenk value two maxima corresponding to the separation of the
system into the free flow phase and jammed phase. We obtain from a finite-size scaling analysis of the smallest
jam mode that upon approaching the transition, long-range correlations of the jams occur.
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PACS number~s!: 05.40.2a, 89.40.1k, 05.60.2k
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I. INTRODUCTION

Real traffic displays with increasing car density a tran
tion from free flow traffic to congested traffic. This brea
down of free flow traffic is accompanied by the occurren
of traffic jams which are not attributable to any extern
cause but only to distance fluctuations between follow
vehicles within very dense and unstable traffic~see, for in-
stance,@1#!. These traffic jams find expression in sho
waves, i.e., in backward moving density fluctuations. T
property of jams was already found during the 1960s in tr
fic observations@2#. Beyond these early experimental inve
tigations, recently performed measurements of real highw
traffic led to the conjecture that jams are characterized
several independent parameters, e.g., the jam velocity, m
flux, etc. @3#.

Since the seminal work of Lighthill and Whitham in th
middle of the 1950s@4#, many attempts have been made
construct more and more sophisticated models which in
porate various phenomena occurring in real traffic~for an
overview, see@5,6#!. A few years ago Nagel and Schrecke
berg @7# introduced a cellular automata model, which sim
lates single-lane one-way traffic, and which is able to rep
duce the main features of traffic flow, backward movi
shock waves, and the so-called fundamental diagram~see@8#
and references therein!. Investigations of the Nagel
Schreckenberg traffic flow model show that when crossin
critical point, a transition takes place from a homogene
regime~free flow phase! to an inhomogeneous regime, whic
is characterized by a coexistence of the free flow phase
the jammed phase@9,10#. Thereby, the free flow phase
characterized by a low local density and the jammed ph
by a high local density, respectively. Due to the particle c
servation of the model, the transition is realized by the s
tem separating into a low density region and a high den
region @9#. Despite several attempts, it is still an open qu
tion whether the transition can be described as a critical p
nomenon~see, for instance,@9,11–14#!.

An attempt to investigate the occurrence of a jam w
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made by Vilar and Souza@11#, who introduced an order pa
rameter which equals the number of standing cars. With
noise this quantity vanishes continuously below the tran
tion. But including noise, the amount of standing cars
finite for any nonzero density, i.e., the average number
standing cars does not vanish below the critical density. T
crucial point is that below the transition a particle may st
due to the noisy slowing down rule of the dynamics, but t
behavior does not coincide with backward moving dens
fluctuations and algebraic decaying correlation functio
which would indicate a critical behavior of the system.
present, a convincing definition of an order parameter, wh
tends below the critical density to zero, is not known. Aga
it is not even clear whether the Nagel-Schreckenberg tra
flow model displays criticality at all.

We use the dynamical structure factor both to make p
dictions about the properties of the different phases obse
in the Nagel-Schreckenberg model and to investigate
question of whether the occurrence of a jam can be descr
as a phase transition or not. The dynamical structure fa
which is closely related to the correlation function is an a
propriate tool to do this because it naturally distinguish
between the two phases characterized by positive and n
tive velocities~free traffic flow and backward moving shoc
waves!. Thus the advantage of our method of analyses is
the properties of both phases can be examined without
necessity of defining a car as jammed or not. The pape
organized as follows. In Sec. II we briefly describe o
analysis of the dynamical structure factor and recall the m
results which were published recently@15#. In Sec. III we
extend this method of analysis to the so-called veloc
particle space and address the question of whether the
sition from the free flow regime to the phase coexisting
gime ~where the system separates into the jammed and
flow phase! can be considered as a phase transition. Base
the dynamical structure factor, our results suggest that a c
tinuous phase transition takes place.

II. MODEL AND SIMULATIONS

The Nagel-Schreckenberg traffic flow model@7# is based
on a one-dimensional cellular automaton of linear sizeL and
N particles. Integer values describing the positionr n
2672 ©1999 The American Physical Society
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PRE 59 2673CRITICAL BEHAVIOR OF A TRAFFIC FLOW MODEL
P$1,2, . . . ,L%, the velocityvnP$0,1, . . . ,vmax%, and the gap
gn to the forward neighbor are associated with each parti
For each particle, the following update steps representing
acceleration, the slowing down, the noise, and the motion
the particles are done in parallel:~i! if vn,gn , the velocity
is increased with respect to the maximal velocity,vn
→min$vn11,vmax%; ~ii ! to avoid crashes the velocity is de
creased byvn→gn if vn.gn ; ~iii ! if vn.0, the velocity is
decreased byvn→vn21 with probabilityP in order to allow
fluctuations; and finally~iv! the motion of the cars is given
by r n→r n1vn . Thus the behavior of the model is dete
mined by three parameters, the maximal velocityvmax, the
noise parameterP, and the global density of carsr5N/L,
whereN denotes the total number of cars andL the system
size, which is chosen to beL532 768 throughout the whole
paper.

Our analysis is based on the dynamical structure fa
whose definition is as follows: Consider the occupation fu
tion

h r ,t5H 1 if cell r is occupied at timet

0 otherwise.
~1!

The evolution ofh r ,t leads directly to the space-time dia
gram where the propagation of the particles can be visual
~see, for instance, Fig. 2 in@16#!. The dynamical structure
factor S(k,v) is then given by

S~k,v!5
1

l T K U(
r ,t

h r ,te
i ~kr2vt !U2L , ~2!

where the Fourier transform is taken over a finite rectangle
the space-time diagram of sizel 3T, i.e., r andt are integers
ranging from 1 tol and 1 toT, respectively. Thenk andv
are also discrete valuesk52pmk / l and v52pmv /T with
mkP$0,1,2, . . . ,l 21% and mvP$0,1,2, . . . ,T21%, respec-
tively. The dynamical structure factorS(k,v) is related to
the Fourier transform of the real-space density-density c
relation functionC(r ,t) and compared to the analysis of th
steady-state structure factor@9# and the related steady-sta
correlation function@14# it contains both the spatial and th
temporal evolution of the system. Figure 1 shows the
namical structure factor both below and above the transit
Below the transitionS(k,v) exhibits one mode formed b
the ridges. This mode is characterized by a positive slopv
5]v/]k corresponding to the positive velocityv f of the
particles in the free flow phase. Increasing the global dens
a second mode appears at the transition to the coexist
regime. This second mode exhibits a negative slopev j
,0) indicating that it corresponds to the backward mov
density fluctuations in the jammed phase.

Due to the sign of their characteristic velocitiesv f andv j ,
both phases can clearly be distinguished. Recently perfor
investigations revealed that the characteristic velocity of
free flow phase equals the velocity (v f5vmax2P) of free
flowing cars in the low density limit (r→0), i.e., cars of the
free flow phase behave as independent particles for all d
sities @15#. The velocity of the jams neither depends on t
global density nor on the maximum velocity, i.e., it is
function of the noise parameter only@15#. This result coin-
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cides with those of recently published investigations@17#,
which were obtained from a variation analysis of
multipoint-autocorrelation function. The jam velocity is, b
side the maximum flow, the fluxes inside and outside of
jam and the average vehicle speeds~see, for instance,@3,18#
and references therein!. A characteristic parameter of rea
traffic and its knowledge is therefore necessary to calibr
any traffic model to the conditions observed in real traffic

III. THE JAMMED PHASE

In the preceding section we briefly described that
analysis of the dynamical structure factor allows to det
mine the characteristic velocities of the jammed and the f
flow phase. In this section we are interested in the corre
tions occurring within the jammed phase. Therefore, it
necessary to analyze the jammed mode. Unfortunately,
superposition of the jammed and the free flow mode make
difficult to consider the pure jammed mode~see Fig. 1!. Thus
a refinement of the analysis of the dynamical structure t
allows to separate both modes is needed. This can
achieved by changing from the occupation functionh r ,t , de-
fined in real space, to the velocity-particle space where
evolution of each particle velocityvn,t is considered. A snap
shot of the velocity-particle space for a given time is sho
in Fig. 2. In the free flow phase, where the cars can
considered as independent particles@9#, the velocities fluctu-
ate according to the noisy slowing down rule between
two valuesvmax andvmax21, respectively. Extended region
with small or even zero velocities corresponds to traf
jams. Comparable to the space-time diagram, these reg
move backward in time. The Fourier transform of th
velocity-particle diagram in two dimensions leads to the d
namical structure factorSv(k,v) which is given by

FIG. 1. The dynamical structure factorS(k,v) below ~upper
figure! and above~lower figure! the jamming transition. The ridge
with maximalS(k,v) indicate the various modes.
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Sv~k,v!5
1

N T K U(
n,t

vn,t ei ~kn2vt !U2L , ~3!

with k52pmk /N, v52pmv /T, and where them’s are in-
tegers.

Compared to the dynamical structure factor of the or
nary space-time diagram, the dynamical structure facto
the velocity-particle space has the advantage that the
flow phase contributes only white noise@Sv(k,v)u free flow
5const#, i.e., the analysis of the occurring traffic jams
made easier. Figure 3 shows the structure factorSv(k,v)
above the transition. The structure factor displays one ri
with a negative slope, corresponding to the backward m
ing jams. The notch parallel to thek axis throughv50 is
caused by finite-size effects and disappears with increa
system size. The peak in the center of the diagram@Sv(k
50,v50)# describes the velocity fluctuations of the who
system. It is an average over both coexisting phases
therefore it leads to uncertain results on the occurrence
jams.

In the following we carry out a quantitative analysis of t
ridges to obtain information about correlations betwe

FIG. 2. Snapshot of the velocityvn,t as a function of car numbe
n at a certain timet andP50.5. Jams are characterized by seve
particles with low velocity. The free flow particles fluctuate ind
pendently betweenvn,t5vmax21 andvn,t5vmax.

FIG. 3. The dynamical structure factorSv(k,v) of the velocity-
particle space above the transition forP50.5. Notice that the free
flow phase contributes toSv(k,v) only white noise.
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jammed particles. We will show that among those particl
long-range correlations exist only above the transit
whereas below the transition these correlations are restri
to a finite correlation length. In Fig. 4 we plot the values
the dynamical structure factorSv(k,v) for v/k5v j , i.e., the
values along the ridge which correspond to the jam mod
In order to take finite-size effects into account, we use
scaling ansatz

Sv~k,v!uv/k5v j
5N2u f ~Nzk!. ~4!

For u521.22 andz50.34 we obtain a convincing data co
lapse of all curves. The dynamical structure factor dec
algebraically,

Sv~k,v!uv/k5v j
;k2g, ~5!

where the exponent is given byg'3.660.2. This algebraic
decay of the dynamical structure factor indicates that
corresponding correlation function is also characterized
an algebraic decay, i.e., the system displays long-range
relations above the transition. Next we are interested in
values ofSv(k,v) for v/k5v j below the critical density.
These values are shown in Fig. 5. Due to the finite amoun
standing cars below the transition, the jam mode does
vanish. Our analysis shows that the jam mode decreases
a Lorentz curve,

Sv~k,v!uv/k5v j
;

1

11~k j!2
1c. ~6!

Hereinj denotes a correlation length, defined in the veloci
particle space. The termc takes into consideration tha
caused by the free flow phase, the jam mode does not ten
zero for largek but to a finite value. Beside the jam mod
Fig. 5 shows a Lorentz curve according to Eq.~6!, which has
been fitted to the data. To estimate the influence of finite-s

l

FIG. 4. The scaling plot ofSv(k,v) along the jam mode for
various values ofN ~with NP$128,256,512,1024,2048% and N
5T) and a fixed value of the global density withr.rc . For u5
21.22 andz50.34 we got a good data collapse indicating that t
correlation of the jams decays algebraically~dashed line with slope
g523.6).
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PRE 59 2675CRITICAL BEHAVIOR OF A TRAFFIC FLOW MODEL
effects on the correlation length, we first determined thej for
different values ofN ~with T5N) and found thatj is almost
unaffected by finite-size effects for the densities shown
Fig. 5. Therefore, these values of the correlation length eq
within negligible errors those values of the correlation leng
found in the limit N→` ~with N5T). The dependence o
the correlation length onrc2r is shown in the inset of Fig.
5. With r approachingrc the correlation length diverges as

j;~rc2r!2n, ~7!

with n50.9260.05.
Since j describes the correlation of particles of th

jammed phase, the occurrence of long-range order in
system atr5rc indicates that the system displays criticalit
As mentioned above, the correlation lengthj is infinite
above the transition~long-range order! and finite below. This
coincides with measurements of the lifetime distribution
jams at the critical point@19# which displays a power-law
behavior, i.e., traffic jams occur on all time scales. Below t
critical density the lifetime of the jams is finite and no long
range correlations of jams can occur.

In the following we address the question of how lon
range order occurs by approaching the transition po
Therefore we consider the smallest positive mode on
ridge of jammed particles,Sv(k→0,v→0) with v/k5v j .
This value contains the information regarding how lon
range and long-time correlations appear when the transi
takes place and it is believed to be closely related to an or
parameter~see, for instance,@20#!. If the transition from the
free flow regime to the jammed regime can be described a
critical phenomenon,Sv(k→0,v→0) should vanish below
the transition (r,rc). Simulating finite system sizes, thi
means that the smallest jam mode obeys the finite-size s
ing ansatz

Sv~k→0,v→0!5~NT!2y/2f „~NT!x/2~r2rc!…, ~8!

FIG. 5. The dynamical structure factorSv(k,v) for v/k
5v j , vmax55, P50.5, and N51024. The dashed line corre
sponds to a Lorentzian fit according to Eq.~6!. The inset shows the
correlation lengthj as a function ofrc2r. The obtained power-law
behavior~solid line! agrees with Eq.~7!.
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with v/k5v j . We measuredSv(k→0,v→0) for various
values ofN andT and forP50.321 which corresponds to
jam velocity v j'21/2 @15#. The finite-size scaling works
and for y'20.2 andx'0.1 we got a good data collaps
which is plotted in Fig. 6. Especially we obtain the da
collapse for different ratios ofN andT, which shows that the
system behaves isotropic inN andT. To investigate the de-
pendence of the exponents onP, we determined them also
for another value of the noise parameter (P50.519 corre-
sponding tov j'21/3). Due to the size of the correspondin
error bars, no significantP dependence of the exponen
could be observed. Further investigation with improved
curacy is needed to clarify this point.

Note that it is not justified to identify the scaling expo
nents@Eq. ~8!# with the usual critical exponents of secon
order phase transitions (y5b/n andx51/n). First it is not
clear if Sv(k→0,v→0) equals the order parameter~see@20#
and references therein!. The second point is that the usu
finite-size scaling ansatz rests on the validity of the hyp
scaling relation between the exponents~see, for instance
@21#!. Despite these restrictions, the finite-size scaling ana
sis of the smallest jam mode reveals that it vanishes be
the transition. In the hydrodynamic limit (N→`,T→`) no
long-range correlations in space and time occur forr,rc .
Above the critical value the correlation function displays
algebraic decay. Since the correlations of the jams are fi
below and infinite aboverc , the system displays critical be
havior. This agrees with the above-mentioned investigati
of the lifetime distribution@19# of jams and with measure
ments of the relaxation time of the system. It was shown t
the relaxation timet diverges at the critical point with in-
creasing system sizet;Lz with a P depending exponentz
@12–14#. But one has to mention that above the transition
measurements of the relaxation time yield unphysical resu
in the sense that the relaxation time becomes negative@14#.
We think that the origin of this behavior is caused by t
inhomogeneous character of the system above the trans
where the system separates into two coexisting phases.
relaxation time measurement does not take this inhomo
neous character into account.

FIG. 6. The smallest mode ofSv(k→0,v→0), with v/k5v j ,
for different values ofN (NP$128,256,512,1024%) and ratios
N/T (N/TP$0.5,1,2,4%) andP50.321.
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IV. CONCLUSIONS

We studied numerically the Nagel-Schreckenberg tra
flow model. The investigation of the dynamical structure fa
tor allowed us to examine the transition of the system from
free flow regime to a jammed regime. Above the transit
the dynamical structure factor exhibits two modes cor
sponding to the coexisting free flow and jammed phase. D
to the sign of their characteristic velocitiesv f andv j , both
phases can clearly be distinguished.

The analysis of the dynamical structure factor of t
velocity-particle space shows that above the transition
o-
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system exhibits long-range correlations of the jammed p
ticles and below the transition the correlations display a fin
correlation length that diverges at the critical point, indic
ing that a continuous phase transition takes place. Usin
finite-size scaling analysis, we showed that in the hydro
namic limit the smallest jam mode which corresponds to
long-range correlations of jams vanishes below the tra
tion. We think that an extended investigation of this quant
could lead to a convincing definition of an order parame
which describes the transition from the free flow to t
jammed regime.
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